domingo, 13 de mayo de 2012

La Antena Yagi (Parte 2)

Luego de analizar el principio de funcionamiento de esta singular antena, veremos cómo realizar su construcción, paso a paso, con todos los elementos necesarios para obtener un funcionamiento correcto. Además del armado mecánico y físico de la antena, veremos algunos conceptos importantes sobre las unidades de ganancia (los decibeles o decibelios), los diferentes métodos de uso de estas antenas y por supuesto, su comparación respecto a antenas elementales. Con la teoría, la demostración y los ensayos realizados, sólo te resta realizar algunas operaciones matemáticas sencillas y construir tu propia antena Yagi. ¡A trabajar!

xiste una antena ideal que no es otra cosa que un modelo, o ente matemático y se llama Antena (o Radiador) Isotrópica. En su concepto ideal es un punto en el espacio que es capaz de irradiar señales en todos los sentidos por igual. Es como si fuera un punto luminoso dentro de una esfera que puede iluminar todo su interior en forma uniforme. Esta sería una antena “adireccional”. En la práctica, todas las antenas presentan algún grado de direccionalidad que sería la aptitud de la antena para concentrar la radiación en una dirección definida o, en su defecto, en algunas direcciones más intensamente que en otras. Aquí aparece entonces, un tipo de antena más teórico que la antena elemental que conocíamos y que era el dipolo de media onda o, en su defecto, la antena vertical de un cuarto onda. Esta antena isotrópica por lógica, no posee ganancia alguna, ya que irradia en todos los sentidos por igual, mientras que cualquier antena física es capaz de emitir (o recibir) señales en algún sentido más intenso que en otro. De este modo, se considera que la antena isotrópica posee 0dB de ganancia, mientras que “se considera” que el dipolo de media onda o la antena vertical de un cuarto de onda tienen una ganancia de 2,15dBi, “decibeles respecto a la isotrópica

¿Te interesa construir una antena Yagi para UHF? Continúa leyendo AQUÍ

lunes, 7 de mayo de 2012

Medidor de ROE (VHF y UHF)

No siempre es sencillo resumir en pocas palabras la descripción completa, adecuada y abreviada de un instrumento de medición importante. Mucho menos, cuando de radiofrecuencia hablamos. Las razones para tener, siempre disponible, un equipo de asistencia para la correcta manufactura de antenas son muchas y quizás solo una pequeña parte podría incorporarse a este sumario. Lo importante que debes saber es que si tu transmisor de datos de control no posee una adecuada antena, tiene dos caminos que siempre son en un solo sentido. El primero conduce a un pobre y reducido alcance, en el enlace de datos y el segundo desemboca en una destrucción segura, con el tiempo, del equipo transmisor. Por eso, para que siempre tus antenas estén funcionando siempre al 100%, hoy te traemos una nueva herramienta para tu arsenal de instrumentos: un Medidor de ROE para VHF y UHF. (SWR Meter)

Tenemos siempre, en todo sistema de antena, un porcentaje de energía que se puede irradiar y otro que NO se podrá entregar al aire. Encontrarás, por lo general, dos nombres dedicados a esta energía o potencia entregada: Directa o Incidente mientras que para la potencia que es devuelta hacia el equipo siempre se llamará Reflejada. Por supuesto, en terminología inglesa se resume en Fordward y Reverse. Algunos instrumentos muestran en simultáneo, con instrumentos de dos agujas, la potencia de transmisión (en Watts, o Vatios) y la Relación de Ondas Estacionarias del sistema de antena que, como vimos en la gráfica, comprende todo lo que esté incluido desde la salida del transmisor hasta el elemento activo o irradiante. Otros, como el nuestro, sólo ofrecen información de la desadaptación del sistema de antena respecto al equipo, que en última instancia es el dato que deseamos saber para prevenir cualquier desperfecto o mal funcionamiento. Además, una antena ajustada en forma correcta en transmisión, resonará sin inconvenientes para brindarnos una recepción óptima en la frecuencia deseada.

¿Quieres saber cómo construir este fantástico instrumento? Continúa leyendo AQUÍ

domingo, 29 de abril de 2012

La Antena Yagi

Esta popular antena, que se ha consolidado a través de los años, fue creada y patentada en 1926 por el doctor Hidetsugu Yagi, de la Universidad de Tokio. La configuración mínima de este modelo de antena utiliza sólo dos “elementos”, sin embargo, el agregado de más “elementos” provee a la antena una característica muy deseada por todos los usuarios de equipos de radio: ganancia. Como dato útil para entusiasmar a cualquiera, podemos decir que una antena Yagi de 6 elementos puede lograr cifras de ganancia ubicadas en el orden de los 12dB. En términos prácticos, esto equivaldría a que un transmisor de 50Watts pueda ser escuchado como si emitiera con 1KW (1000Watts) (o vatios). Si en verdad intentas llegar lejos con tu transmisión de radio, este artículo es para ti.



Se llama director a un elemento pasivo que proporciona ganancia en el sentido dirigido desde él hacia el elemento activo o irradiante y por lo general, es más corto (en longitud) que éste. El elemento conocido como reflector es también pasivo y proporciona ganancia de potencia en el sentido dirigido desde el irradiante hasta él. Siempre es más largo que el elemento activo. Definidos entonces los principales elementos que acompañan a un irradiante, podemos comenzar a armar múltiples configuraciones para construir antenas que tengan ganancia en determinadas direcciones. Por ejemplo, un conjunto formado por un irradiante y un director puede brindar 3dB de ganancia respecto a un dipolo simple. Esta cantidad de decibeles representa el doble de potencia cuando hablamos de un transmisor. Es decir, si transmitimos con 5W y tenemos una ganancia en antena de 3dB, el receptor podría interpretar que estamos emitiendo con un dipolo simple y 10W de potencia. Cuando usamos un reflector, el resultado es el mismo y la ganancia de potencia se manifiesta en una emisión con una direccionalidad definida.

Continúa leyendo este artículo AQUÍ ...

domingo, 1 de abril de 2012

Transmisor de Amplitud Modulada

Conectar un cable y llevar música o la voz hablada de un dispositivo a otro, es un juego de niños que cualquiera podría hacer. Alcanzar ese mismo objetivo, pero sin la unión física que significa el cable, pasa a ser un juego de adultos. Muchos podrían subestimar el montaje de un Transmisor de Amplitud Modulada, sin embargo, no todos los que se lo proponen, llegan a alcanzar el objetivo de su construcción y funcionamiento efectivo. En el montaje que hoy veremos, podremos sentar las bases de cualquier transmisor de AM, útil en la banda de emisión que sea de nuestro interés. Además, veremos muchos “secretos ocultos” que pueden hacer fracasar la construcción más básica. La magia de la radio, presente en NeoTeo.

domingo, 25 de marzo de 2012

En la entrega anterior, comenzamos a ver la posibilidad de controlar luminarias a distancia, mediante los beneficios que nos brindan los dispositivos que disponen de enlace inalámbrico, como es el Bluetooth y vimos los elementos iniciales para comenzar a desarrollar aplicaciones de mayor tamaño. Hoy, en la aplicación creada para nuestro móvil con App Inventor, utilizaremos un objeto móvil diferente que podrá llevar consigo una imagen: un Sprite. Aprovecharemos elementos ya conocidos en montajes anteriores y disfrutaremos de otra posibilidad que Android y los microcontroladores suman a nuestras vidas: el control de la iluminación LED utilizando técnicas de PWM. ¿Donde? AQUÍ

domingo, 4 de marzo de 2012

Reloj con Tubos NIXIE (Parte II)

Luego de haber conocido, en una entrega anterior, a estas sofisticadas lámparas de neón, en este artículo veremos todo el desarrollo de construcción de un reloj con tubos NIXIE (Nixie Clock) funcional y con la máxima exactitud disponible, en su forma más sencilla. Contemplaremos muchos aspectos de diseño con el objeto de lograr un aparato pequeño, de correcto funcionamiento e intentando realizar un trabajo agradable a la vista, cuidando detalles estéticos y de buen gusto. ¿Deseabas construir un reloj de este estilo y nunca encontrabas el camino de inicio? Aquí, te guiaremos para que puedas lograrlo. ¡Vamos!

El circuito empleado es uno de los más llamativos por su simpleza y fácil razonamiento. Utilizando cualquier buscador lo encontrarás de manera muy rápida y lo identificarás al instante por la particularidad de estar dibujado a mano. Nosotros, decidimos trasladar todo a una serie de circuitos hechos del modo en que siempre te presentamos los trabajos en NeoTeo y quizás lo notes o veas diferente, pero si lo observas bien, con detenimiento, es el mismo circuito dibujado “a mano alzada” que circula por toda la web desde hace años y del que te agregamos el enlace al final del artículo. Por razones de espacio lo hemos dividido en varias partes para que, además de ser más sencilla su interpretación, puedas idear a tu gusto y posibilidad, la forma más adecuada de construir el/los PCB necesarios para su implementación. Esto significa que en este artículo no te diremos de qué tamaño es la caja o receptáculo que deberás comprar o conseguir, sino que te mostraremos el nuestro. A partir de nuestra idea, tú podrás mejorarla, optimizarla, ampliarla e instalarla en el gabinete más apropiado que encuentres para la construcción de este reloj de tubos NIXIE. Nosotros hemos preparado una galería de imágenes que recopilamos a lo largo de la fabricación de esta verdadera pieza de colección que hoy te mostramos. Continúa leyendo este artículo AQUÍ ...

Generador de Funciones con NE567

Entre los elementos que todo desarrollador electrónico debe tener en su laboratorio de diseño se encuentra un generador de BF (Baja Frecuencia) con amplitud y frecuencia de salida variables que construiremos con un NE567. Saber que estamos hablando de un circuito sencillo, no resuelve nuestros problemas al momento de requerirlo, por lo tanto, ya es hora de construir un Generador de Funciones básico, con salidas de onda senoidal, triangular y cuadrada para múltiples usos, fácil de transportar y realizado con componentes básicos que encontrarás en cualquier tienda. Si comienzas a dar los primeros pasos en Electrónica, ésta es una herramienta que no puede faltar en tu arsenal de dispositivos útiles para el desarrollo, control de equipos y creación de nuevas formas de vivir la electrónica.

En el argot técnico, se podría mencionar que son muy útiles para generar señales de sincronización de circuitos digitales, donde no es útil la aplicación de osciladores fijos a base de cristales de cuarzo o de resonadores cerámicos, que sólo pueden ofrecer una frecuencia fija. La posibilidad de variar la frecuencia de un oscilador, puede alterar la velocidad de destello de un LED hasta la sintonía de un receptor de radio, todo depende de la aplicación para la que es diseñado y destinado. Otro ejemplo elemental de aplicación es la generación de señales PWM de manera muy sencilla, con dos diodos y un resistor variable, tal como lo muestra el último gráfico de la figura 26 de la hoja de datos que te dejamos al final del artículo. ¿Para que necesitas PWM? Para ensayar servomotores, motores dedicados a aeromodelismo (cuadricóptero) o cualquier tipo de motor CC. En nuestra aplicación, no buscamos esa funcionalidad, pero es bueno que sepas que la tienes a disposición de manera muy sencilla y fácil de implementar. Ahora saliendo del PWM y volviendo al CCO, vale mencionar que según el fabricante, el NE567 sólo depende de dos componentes para fijar la frecuencia de trabajo y para ello, nos presenta una fórmula muy sencilla como vemos en la imagen: la inversa del producto entre C1 y R1. (C1 en Farads y R1 en Ohms). Si deseas continuar leyendo, ingresa AQUÍ ...

lunes, 13 de febrero de 2012

Reloj con Tubos NIXIE

Un desarrollo electrónico que posee múltiples cualidades por ser bonito, delicado y cautivante es, según mi gusto, un reloj construido con los eternos tubos “NIXIE. Muy lejos de tener esa rigidez fría y recta que ofrecen los números que vemos en cualquier reloj digital (a base de LEDs), los tubos NIXIE se presentan agradables, cálidos, con suaves y curvas líneas, que aparentan guardar mucha sabiduría, acumulada con el paso de los años. Basados en la técnica del gas neón, estas bellezas de la electrónica de todos los tiempos nos servirán para construir un reloj elegante, admirable y por sobre todo, útil para embellecer la sala de nuestro hogar. No creas que viajaremos a un mundo que ya no existe.

Muy lejos de caer en el dicho popular de que “todo tiempo pasado fue mejor”, en este artículo veremos una aplicación electrónica que quizás despierte curiosidad e interés en muchos de ustedes. Tecnología que sigue vigente a pesar del paso del tiempo y que, como todo lo que puede ser considerado “arte”, siempre tendrá un espacio y un lugar en el ámbito de trabajo de cualquier desarrollador electrónico. ¿Acaso no conoces los relojes armados con tubos NIXIE? Utiliza cualquier buscador de Internet y descubrirás la belleza que vamos a construir ... Continúa leyendo AQUÍ

Altavoces piezoeléctricos resistentes al agua

Murata Electronics, amplió su línea de altavoces piezoeléctricos resistentes al agua afianzándose como el máximo productor de altavoces para teléfonos inteligentes. Otra característica que destaca a esta línea de altavoces Murata es la propiedad de ser considerado el más delgado del mercado: tan solo 0,9 milímetros de espesor. El resto de las medidas son 22mm x 16,5mm y además, esta nueva generación VSLBG2216E1100-T0, no utiliza una lámina impermeable para protegerlo de la humedad, tal como hacen los demás altavoces convencionales. De este modo, se puede lograr un sonido más claro, cristalino y con una mejor respuesta de frecuencia, ya que no posee nada que impida la salida del sonido y todo lo necesario para que el agua no lo arruine. Entérate de todos los detalles de este altavoz AQUÍ

jueves, 9 de febrero de 2012

MC33064/MC34064: Sensor de baja tensión

Este sensor está muy lejos de ser un producto nuevo en el mercado, pero es un dispositivo muy útil, empleado en los sistemas electrónicos basados en microcontroladores, en particular, orientado a dispositivos que deben trabajar por sobre los 5Volts. Por debajo de una tensión “ajustada en fábrica (4,59V)”, el MC33064/MC34064 activa un terminal de salida que puede ser utilizado para múltiples propósitos y el más empleado, en circuitos embebidos, es para activar las funciones de RESET de un microcontrolador. Por supuesto que este dispositivo brinda posibilidades de acceder a muchas aplicaciones más, pero en este artículo trabajaremos con él como un sensor de bajo voltaje, ideal para sistemas basados en microcontroladores. Si a medida que avanza el artículo las cosas se complican, no te asustes y continúa, el final puede ser inesperadamente lógico.

Para evitar “un estado indefinido”, en algunos comparadores de tensión existen los circuitos que poseen histéresis y en este caso, trabaja de la siguiente manera: cuando en la entrada de tensión (Input) descendemos a menos de 4,59V el comparador cambiará de estado y cuando subimos por encima de 4,61V hará lo mismo, pero a la inversa. Cuando tenemos en la entrada más de 4,61Volts el transistor interno del MC33064 no conduce y en el pin RESET tendremos tensión (estado alto), provista por una resistencia de polarización (pull-up) externa. En cambio, cuando la tensión (Input) desciende a menos de 4,59Volts, el circuito “satura y pone a conducir el transistor interno” y la tensión en el pin RESET se hace cero (Colector y Emisor se cierran “casi” como un interruptor ¿recuerdas?). Observa que los acontecimientos no ocurren en 4,6Volts sino entre dos valores separados, para evitar el antes mencionado “estado indefinido”. Si lo hicieran en 4,6Volts, el circuito estaría cambiando de estado en forma permanente, sería un intermitente subiendo y bajando. Por este motivo, “debe bajar por un lado y subir por otro”. ¿Más fácil aún para comprender? Veamos un gráfico.




Para comprobar este funcionamiento, haremos entonces una pequeña placa para colocarla en la entrenadora NeoTeo y acompañarla de un sencillo programa (que encontrarás al final del artículo) para utilizarlo en la entrenadora, con el LCD de 20 caracteres, y que permita variar la tensión desde 0 a 5Volts, con un pequeño resistor variable (preset). Lo que haremos entonces, será variar la alimentación al MC33064, observar el comportamiento del pin RESET de este dispositivo “al pasar por los puntos mencionados en la hoja de datos del circuito integrado” y en función de ese cambio de estado, encenderemos un LED en el pin RC6 de la placa entrenadora. Toda la variación de tensión será vista en el LCD y allí agregaremos algunas leyendas de texto y otras funcionalidades al sistema. Por ejemplo, marcaremos el sector de tensiones donde se produce la histéresis (también llamada “ventana”) encenderemos un LED verde cuando estemos por encima de esta “porción” y uno rojo cuando estemos por debajo. Cuando estemos dentro de la ventana se encenderán los dos LEDs y el auxiliar, en RC6, que lo hará gobernado por el MC33064, mientras que a los dos de nuestra pequeña placa de ensayos, los manejaremos por instrucciones en el programa. Todo esto, tan lindo, prolijo y colorido ¿se cumplirá en la práctica real?

Descúbrelo leyendo AQUÍ !

MMA153F: Sensor Magnético de Giro (180 grados)

Las estrellas fulgurantes de estos tiempos, cuando hablamos de sensores de posición y/o desplazamiento, son los que utilizan medios magnéticos de detección, a partir de un imán permanente móvil y un circuito integrado, encargado de interpretar el movimiento del imán. MultiDimension Technology Co., ha lanzado a la venta el MMA153F, un sensor de rotación que posee cualidades que otros competidores, de su misma gama, no ofrecen. Este sensor de giro está diseñado como para entregar en su salida una señal senoidal con una amplitud de hasta el 80% de la tensión de alimentación y es capaz de cubrir una rotación completa de 180 grados, con un consumo ultra-bajo de 7uW. Sin dudas, un sensor para tener en cuenta en tus futuros desarrollos.

La tecnología TMR, utilizada en los MMA153F, se componen de dos capas magnéticas ubicadas una a cada lado de una barrera aislante. Una capa ferro-magnética es “fija" (pinned layer) y no es afectada por el campo magnético externo, mientras que la otra, es una "capa libre" (free layer) que adquiere la magnetización externa y busca alinearse en forma paralela al campo magnético aplicado. Debido a esto, el efecto TMR produce una resistencia que es proporcional a la diferencia relativa entre las orientaciones de magnetización entre las capas fijas y libres provocando de este modo, que la salida del sensor proporcione una medida de la orientación del campo magnético. En una aplicación típica para “sensar” el giro de un eje, el campo magnético externo es producido por un pequeño imán cercano a la superficie del MMA153F y separado, como mencionamos antes, por una pequeña distancia denominada “entrehierro”. Con esta configuración mecánica, la salida del MMA153F se puede utilizar para proporcionar una medida del ángulo de rotación, la velocidad de la misma y la aceleración del eje.

Si te interesa saber más sobre este sensor, puedes seguir leyendo AQUÍ ....

domingo, 29 de enero de 2012

Electrónica Básica: Previo de audio con CD4069B

Entre las cosas interesantes que se suelen ver a menudo en la electrónica de consumo, es el modo en que los ingenieros exprimen al máximo sus recursos y logran crear circuitos muy sencillos, en ocasiones con componentes que en su concepción original, fueron ideados para cumplir funciones muy diferentes. Observa como este séxtuple inversor CMOS CD4069B (exacto, un circuito lógico - digital) puede trabajar como un eficaz previo (pre-amplificador) de audio de alta calidad y aprovechando que estamos trabajando con sonido, nada mejor que verlo en acción, incorporado en un sencillo indicador de nivel de audio. ¿No lo conocías? Sorpréndete

La alimentación que hemos propuesto para energizar todo el dispositivo parte de una batería de 9Volts y las realimentaciones utilizadas en las “etapas de amplificación” (¿no suena extraño, sabiendo que estamos hablando de un circuito lógico – digital?) son hechas con simples resistencias de carbón de 470K acopladas entre sí por una resistencia de 1K. Para aquellos teóricos / estudiosos que deseen comprender mejor las ecuaciones y los cálculos relacionados con la ganancia de cada etapa e incluso, si desean ver más aplicaciones con este tipo de inversores CMOS (conversores A/D, Osciladores, Filtros Pasa-Bandas, etc.), al final del artículo dejamos un enlace de descarga a un excelente material teórico con el que podrán avanzar más en los diseños y sus estudios. Nuestra meta hoy es amplificar un micrófono a condensador (electret), divertirnos con ello mientras construimos un PCB (que también te facilitamos el PDF para realizarlo) y armamos un indicador de nivel de audio con entrada por micrófono, con una entrada adicional para cualquier aplicación que requiera de un indicador de nivel. Aquí tienes el circuito completo.

Te interesa seguir esta construcción?
Continúa leyendo AQUÍ

domingo, 22 de enero de 2012

Prácticas con LED (Del dicho al hecho)

En las entregas anteriores, referidas a diodos electro-luminiscentes (LED) y a los métodos de conexión y uso, faltó algo que suele ser fundamental para muchas personas durante sus primeros pasos, dentro de la Electrónica Básica: las imágenes. Ver como los LEDs pueden encender, no sólo en la teoría sino también en la práctica. Por lo tanto, este artículo tendrá mayor contenido de imágenes activas que texto escrito. Haremos un repaso de toda la teoría vista hasta aquí y comprobaremos con nuestros propias manos y ojos, el inicio de la enorme cantidad de aplicaciones que podemos lograr con esta fuente de luz, el LED, que llegó para acompañarnos hacia el futuro.

Tal como te anunciamos en el encabezado, esto será muy poco texto escrito y mucha acción electrónica. Iniciaremos la secuencia de video con explicaciones donde se detallan los circuitos más elementales, las tensiones que ¿deben? tener los LEDs para funcionar, algunos métodos naturales (que la mayoría utiliza) para comprobar los LEDs, luego realizaremos los ajustes de la corriente que circulará por el LED en relación a la selección de resistencia limitadora y también veremos como activar un LED con un transistor como si fuera una llave (Encendido – Apagado). Todo está en los videos. ¿No has podido entenderlo en la parte teórica? ¡Mira la práctica y descúbrelo! Esto es sólo el comienzo. La próxima entrega, te mostrará estas prácticas aplicadas a una señal luminosa indicadora, que a muchos llamó la atención en un video casual, incorporado en el artículo anterior. No te pierdas detalles. Aquí vamos.